DocumentCode :
1849638
Title :
The log-likelihood gradient for infinite dimensional stochastic systems
Author :
Leland, Robert P.
Author_Institution :
Dept. of Electr. & Comput. Eng., Alabama Univ., Tuscaloosa, AL, USA
Volume :
5
fYear :
1999
fDate :
1999
Firstpage :
4337
Abstract :
Using a covariance operator approach, we derive an explicit expression for the log-likelihood ratio gradient for system parameter estimation for continuous time infinite dimensional stochastic systems. The gradient formula includes the smoother estimates and derivatives of system operators, with no derivatives of estimates or covariance operators. The unbounded operators typically found in partial differential equations place limitations on the expression for the gradient. An example of a random heat equation is considered
Keywords :
covariance analysis; gradient methods; maximum likelihood estimation; multidimensional systems; partial differential equations; stochastic systems; continuous time infinite dimensional stochastic systems; covariance operator; covariance operators; infinite dimensional stochastic systems; log-likelihood gradient; log-likelihood ratio gradient; partial differential equations; random heat equation; system parameter estimation; Hilbert space; Indium tin oxide; Maximum likelihood estimation; Parameter estimation; Partial differential equations; Probability; Riccati equations; Space heating; Stochastic systems; White noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1999. Proceedings of the 38th IEEE Conference on
Conference_Location :
Phoenix, AZ
ISSN :
0191-2216
Print_ISBN :
0-7803-5250-5
Type :
conf
DOI :
10.1109/CDC.1999.833224
Filename :
833224
Link To Document :
بازگشت