• DocumentCode
    184993
  • Title

    Input design for model discrimination and fault detection via convex relaxation

  • Author

    Seunggyun Cheong ; Manchester, Ian R.

  • Author_Institution
    Sch. of the Aerosp., Mech. & Mechatron. Eng., Univ. of Sydney, Sydney, NSW, Australia
  • fYear
    2014
  • fDate
    4-6 June 2014
  • Firstpage
    684
  • Lastpage
    690
  • Abstract
    This paper addresses the design of input signals for the purpose of discriminating among a finite set of models of a dynamic system within a given finite time interval. A motivating application is fault detection and isolation. We propose several specific optimization problems with objectives or constraints based on signal power, signal amplitude, and probability of successful model discrimination. Since these optimization problems are nonconvex, we suggest a suboptimal solution via a random search algorithm guided by the semidefinite relaxation (SDR) and analyze the accuracy of the suboptimal solution. We conclude with a simple example taken from a benchmark problem on fault detection for wind turbines.
  • Keywords
    concave programming; convex programming; fault diagnosis; search problems; signal processing; SDR; convex relaxation; dynamic system; fault detection and isolation; finite set; finite time interval; model discrimination; nonconvex optimization problems; probability of successful model discrimination; probing input signal design; random search algorithm; semidefinite relaxation; signal power; suboptimal solution; wind turbines; Data models; Fault detection; Gaussian distribution; Linear programming; Optimization; Testing; Vectors; Fault detection/accomodation; Identification; LMIs;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference (ACC), 2014
  • Conference_Location
    Portland, OR
  • ISSN
    0743-1619
  • Print_ISBN
    978-1-4799-3272-6
  • Type

    conf

  • DOI
    10.1109/ACC.2014.6859400
  • Filename
    6859400