DocumentCode :
1850128
Title :
On the Chaotic Dynamics Analysis of China Stock Market
Author :
Chen, Liangsheng
Author_Institution :
Sch. of Inf. Eng., Shenyang Univ., Shenyang
fYear :
2008
fDate :
18-21 Nov. 2008
Firstpage :
3011
Lastpage :
3015
Abstract :
This paper proves the China stock market to be a chaotic system and establishes a nonlinear dynamical model for it based on the study on the nonlinear dynamical properties of Shanghai stock composite index sequence by using chaos and fractal theory. The phase space of the stock sequence is reconstructed and the correlation dimension is analyzed, which indicate that the dynamical system has finite degree of freedom. The nonlinear evolution mechanism is observed and the initial value sensitive characteristic of the system is demonstrated through Lyapunov exponent analysis. Finally, the stock sequence is reconstructed by using finite degree of freedom based fractal interpolation algorithm and gaining reasonably accurate replications. The experimental results indicate that the nonlinear dynamical model is more effective to describe the China stock market than the conventional "random walk" theory based stochastic models.
Keywords :
Lyapunov matrix equations; chaos; interpolation; nonlinear dynamical systems; random processes; stock markets; China stock market; Lyapunov exponent analysis; Shanghai stock composite index sequence; chaotic dynamics analysis; chaotic system; conventional random walk theory; fractal interpolation algorithm; fractal theory; nonlinear dynamical model; stochastic models; Autocorrelation; Chaos; Delay effects; Fluctuations; Fractals; Information analysis; Interpolation; Nonlinear dynamical systems; Security; Stock markets; Lyapunov exponent; Securities business; chaotic dynamics; correlation dimension; fractal interpolation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Young Computer Scientists, 2008. ICYCS 2008. The 9th International Conference for
Conference_Location :
Hunan
Print_ISBN :
978-0-7695-3398-8
Electronic_ISBN :
978-0-7695-3398-8
Type :
conf
DOI :
10.1109/ICYCS.2008.392
Filename :
4709464
Link To Document :
بازگشت