DocumentCode :
1850575
Title :
On moving average parameter estimation
Author :
Sandgren, Niclas ; Stoica, Petre ; Babu, Prabhu
Author_Institution :
Dept. of Inf. Technol., Uppsala Univ., Uppsala, Sweden
fYear :
2012
fDate :
27-31 Aug. 2012
Firstpage :
2348
Lastpage :
2351
Abstract :
Estimation of the autoregressive moving average (ARMA) parameters of a stationary stochastic process is a problem often encountered in the signal processing literature. It is well known that estimating the moving average (MA) parameters is usually more difficult than estimating the autoregressive (AR) part, especially if the zeros are located close to the unit circle. In this paper, we present four linear methods for MA parameter estimation (i.e., methods that involve only linear operations) and compare their performances first in a case when the zeros are located far away from the unit circle and secondly in a presumably harder case when the zeros are located very close to the unit circle.
Keywords :
autoregressive moving average processes; parameter estimation; signal processing; stochastic processes; ARMA parameters; MA parameter estimation; autoregressive moving average parameters; moving average parameter estimation; signal processing literature; stationary stochastic process; unit circle; Accuracy; Cepstral analysis; Correlation; Estimation; Europe; Monte Carlo methods; Parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing Conference (EUSIPCO), 2012 Proceedings of the 20th European
Conference_Location :
Bucharest
ISSN :
2219-5491
Print_ISBN :
978-1-4673-1068-0
Type :
conf
Filename :
6334003
Link To Document :
بازگشت