DocumentCode :
1850913
Title :
Analysis on Secure and Effective Applications of a DNA-Based Cryptosystem
Author :
Hirabayashi, Miki ; Nishikawa, Akio ; Tanaka, Fumiaki ; Hagiya, Masami ; Kojima, Hiroaki ; Oiwa, Kazuhiro
Author_Institution :
Adv. ICT Res. Inst. (Kansai Adv. Res. Center), Nat. Inst. of Inf. & Commun. Technol., Kobe, Japan
fYear :
2011
fDate :
27-29 Sept. 2011
Firstpage :
205
Lastpage :
210
Abstract :
Unbreakable encryption is theoretically possible but perfect operation is difficult. It is expected that DNA-based cryptography provides new solutions to realize a perfect secrecy system. For example, the self-assembly process in DNA logical computation can generate physical random numbers for encryption keys. Furthermore DNA-based steganography offers a unique method to keep the key and the cipher in safe. In this paper we describe a theoretical background on perfect secrecy based on Shannon entropy and present an empirical analysis on effectiveness of a DNA-based cryptosystem using a DNA motif called "triple crossover tile." In DNA computation, troublesome procedures to read out the calculation results prevent the realization of practical applications. To solve this problem, we already presented the idea of a direct readout method called "tile sequencing" with atomic force microscopy image analysis. "Tile sequencing" makes it possible to extract random calculation results, which is difficult to read out by existing methods. Here we discuss the appropriate application of the DNA cryptosystem taking advantage of "tile sequencing." Although there are still problems to be solved, the separation storage of specific information, such as medical records, and personal data using personal identifiers encrypted by DNA cryptography will be one of promising applications.
Keywords :
biology; cryptography; information theory; steganography; DNA based cryptosystem; DNA based steganography; DNA cryptosystem; DNA logical computation; Shannon entropy; image analysis; physical random numbers; tile sequencing; unbreakable encryption; DNA; Encryption; Entropy; Imaging; Tiles; Uncertainty; Algorithmic self-assembly; DNA computing; DNA-based cryptography; One-time pads;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Bio-Inspired Computing: Theories and Applications (BIC-TA), 2011 Sixth International Conference on
Conference_Location :
Penang
Print_ISBN :
978-1-4577-1092-6
Type :
conf
DOI :
10.1109/BIC-TA.2011.29
Filename :
6046899
Link To Document :
بازگشت