• DocumentCode
    185159
  • Title

    A framework for modeling and analysis of dynamical properties of spiking neurons

  • Author

    Phillips, Scott ; Sanfelice, Ricardo G.

  • Author_Institution
    Dept. of Aerosp. & Mech. Eng., Univ. of Arizona, Tucson, AZ, USA
  • fYear
    2014
  • fDate
    4-6 June 2014
  • Firstpage
    1414
  • Lastpage
    1419
  • Abstract
    A hybrid systems framework for modeling and analysis of robust stability of spiking neurons is proposed. The framework is developed for a population of n interconnected neurons. Several well-known neuron models are studied within the framework, including both excitatory and inhibitory simplified Hodgkin-Huxley, Hopf, and SNIPER models. For each model, we characterize the sets that the solutions to each system converge to. Using Lyapunov stability tools for hybrid systems, the stability properties for each case are established. An external stimuli is introduced to the simplified Hodgkin-Huxley model to achieve a global asymptotic stability property. Due to the regularity properties of the data of the hybrid models considered, the asserted stability properties are robust to small perturbations. Simulations provide insight on the results and the capabilities of the proposed framework.
  • Keywords
    Lyapunov methods; asymptotic stability; neural nets; Hopf models; Lyapunov stability tools; SNIPER models; dynamical properties; global asymptotic stability property; hybrid systems; hybrid systems framework; neuron models; robust stability; simplified Hodgkin-Huxley models; spiking neurons; Analytical models; Asymptotic stability; Lyapunov methods; Mathematical model; Neurons; Robustness; Stability analysis; Biological systems; Hybrid systems; Stability of hybrid systems;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference (ACC), 2014
  • Conference_Location
    Portland, OR
  • ISSN
    0743-1619
  • Print_ISBN
    978-1-4799-3272-6
  • Type

    conf

  • DOI
    10.1109/ACC.2014.6859494
  • Filename
    6859494