DocumentCode :
1852914
Title :
Source localization using adaptive subspace beamformer outputs
Author :
Baranoski, Edward J. ; Ward, James
Author_Institution :
Lincoln Lab., MIT, Lexington, MA, USA
Volume :
5
fYear :
1997
fDate :
21-24 Apr 1997
Firstpage :
3773
Abstract :
Maximum likelihood (ML) parameter estimation for multi-dimensional adaptive problems is addressed. Multiple adaptive outputs are ordinarily combined by utilizing the full dimension data. However, many adaptive problems utilize subspace processing for each adaptive beam which can increase the difficulty of many super-resolution techniques. This paper shows that the steering vector structure can be utilized to allow ML techniques for a fixed grid of hypothesis vectors to be computationally feasible for many scenarios
Keywords :
adaptive signal processing; airborne radar; array signal processing; direction-of-arrival estimation; interference suppression; jamming; maximum likelihood estimation; radar clutter; radar detection; radar signal processing; signal resolution; 2D azimuth Doppler target localization; adaptive beam; adaptive subspace beamformer outputs; airborne nulling; airborne radar system; clutter; hypothesis vectors; jammer; maximum likelihood parameter estimation; multidimensional adaptive problems; multiple adaptive outputs; radar target detection; source localization; space-time adaptive processing; steering vector structure; subspace processing; superresolution techniques; Adaptive arrays; Array signal processing; Clutter; Covariance matrix; Laboratories; Maximum likelihood estimation; Parameter estimation; Planar arrays; Position measurement; Radar;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on
Conference_Location :
Munich
ISSN :
1520-6149
Print_ISBN :
0-8186-7919-0
Type :
conf
DOI :
10.1109/ICASSP.1997.604698
Filename :
604698
Link To Document :
بازگشت