Title :
Robust adaptive observers for nonlinear systems with bounded disturbances
Author :
Marino, Riccardo ; Santosuesso, G.L. ; Tomei, Patrizio
Author_Institution :
Dip. di Ingegneria Elettronica, Rome Univ., Italy
Abstract :
Existing adaptive observers for nonlinear systems may generate unbounded parameter estimates in the presence of bounded disturbances. Robust adaptive observers are presented which prevent parameter estimate drift; guarantee the input to state stability property of the error dynamics with respect to disturbances and parameter time-derivatives under persistency of excitation; and achieve asymptotic convergence of state estimation errors for systems in adaptive observer form. Those results are obtained by generalizing a previous result and Barbalat´s lemma
Keywords :
convergence; nonlinear systems; observers; parameter estimation; Barbalat´s lemma; asymptotic convergence; bounded disturbances; error dynamics; input to state stability property; parameter time-derivatives; persistency of excitation; robust adaptive observers; state estimation errors; unbounded parameter estimates; Adaptive systems; Asymptotic stability; Convergence; Nonlinear systems; Observers; Parameter estimation; Robust stability; Robustness; State estimation; State-space methods;
Conference_Titel :
Decision and Control, 1999. Proceedings of the 38th IEEE Conference on
Conference_Location :
Phoenix, AZ
Print_ISBN :
0-7803-5250-5
DOI :
10.1109/CDC.1999.833378