DocumentCode :
1853767
Title :
A finite basis of the set of all monotone partial functions defined over a finite poset
Author :
Nozaki, Xkihiro ; Lashkia, Vakhtang
Author_Institution :
Sch. of Social Inf. Studies, Otsuma Women´´s Univ., Japan
fYear :
1998
fDate :
27-29 May 1998
Firstpage :
380
Lastpage :
382
Abstract :
Let X be an arbitrary poset. A partial function f with n variables defined over X is said to be monotone if the following condition is satisfied: if x1⩽y1,..., xm⩽y n, and both the values f(x1,..., xn) and f(y1,....yn) are defined, then f(x1,..., xn)⩽f(y1,...,yn) It is shown that the set of all monotone partial functions has a finite basis
Keywords :
formal logic; set theory; finite basis; finite poset; monotone partial functions; partial function; Computer science;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multiple-Valued Logic, 1998. Proceedings. 1998 28th IEEE International Symposium on
Conference_Location :
Fukuoka
ISSN :
0195-623X
Print_ISBN :
0-8186-8371-6
Type :
conf
DOI :
10.1109/ISMVL.1998.679518
Filename :
679518
Link To Document :
بازگشت