Title :
Parallel Pattern Recognition Using a Single-Cycle Learning Approach within Wireless Sensor Networks
Author :
Amin, Anang Hudaya Muhamad ; Khan, Asad I.
Author_Institution :
Clayton Sch. of Inf. Technol., Monash Univ., Clayton, VIC
Abstract :
Pattern recognition applications such as natural phenomena detection and structural health monitoring have been widely applied using wireless sensor networks. These applications involve large amount of data to be analysed, and thus incur high computational time and complexity. In this paper, we present a parallel associative memory-based pattern recognition algorithm known as distributed hierarchical graph neuron (DHGN). It is a single-cycle learning algorithm with in-network processing capability; able to reduce computational loads by efficiently disseminates recognition processes throughout the network. Hence, suitable to be deployed in wireless sensor networks. The results of the accuracy and scalability tests show that our system performs with high accuracy and remains scalable for increases in pattern size and the number of stored patterns. The response time for pattern recognition remains within milliseconds irrespective of the size of the network.
Keywords :
computational complexity; data analysis; graph theory; learning (artificial intelligence); neural nets; parallel algorithms; pattern recognition; telecommunication computing; wireless sensor networks; computational load reduction; distributed hierarchical graph neuron; parallel pattern recognition; single-cycle learning approach; wireless sensor network; Computer networks; Data analysis; Delay; Monitoring; Neurons; Pattern recognition; Performance evaluation; Scalability; System testing; Wireless sensor networks; Graph Neuron (GN); Parallel Pattern Recognition; Wireless Sensor Networks (WSNs);
Conference_Titel :
Parallel and Distributed Computing, Applications and Technologies, 2008. PDCAT 2008. Ninth International Conference on
Conference_Location :
Otago
Print_ISBN :
978-0-7695-3443-5
DOI :
10.1109/PDCAT.2008.47