DocumentCode :
1854813
Title :
Hierarchical probabilistic principal component subspaces for data visualization
Author :
Wang, Yue ; Luo, Lan ; Freedman, Matthew T. ; Kung, Sun Yuan
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Catholic Univ. of America, Washington, DC, USA
Volume :
4
fYear :
1999
fDate :
1999
Firstpage :
2498
Abstract :
Visual exploration has proven to be a powerful tool for multivariate data mining. Most visualization algorithms aim to find a projection from the data space down to a visually perceivable rendering space. To reveal all of the interesting aspects of complex data sets existing in a high-dimensional space, a hierarchical visualization algorithm is introduced, which allows the complete data set to be visualized at the top level, with clusters and subclusters of data points visualized at deeper levels. The methods involve multiple use of standard finite normal mixture models and probabilistic principal component projections, whose parameters are estimated using the expectation-maximization and principal component neural networks under the information theoretic criteria. We demonstrate the principle of the approach on two 3D synthetic data sets
Keywords :
data mining; data visualisation; information theory; neural nets; principal component analysis; EM neural nets; PCA neural networks; data mining; data points; data visualization; hierarchical visualization algorithm; information theory; principal component analysis; Clustering algorithms; Computer science; Data mining; Data structures; Data visualization; Displays; Neural networks; Parameter estimation; Radiology; Sun;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 1999. IJCNN '99. International Joint Conference on
Conference_Location :
Washington, DC
ISSN :
1098-7576
Print_ISBN :
0-7803-5529-6
Type :
conf
DOI :
10.1109/IJCNN.1999.833465
Filename :
833465
Link To Document :
بازگشت