DocumentCode :
1855077
Title :
Self-learning deconvolution using a cascade of magnitude and phase equalizers
Author :
da Rocha, Carlos A F ; Romano, João Marcos T ; Macchi, Odile
Author_Institution :
Univ. Estadual de Campinas, Sao Paulo, Brazil
Volume :
1
fYear :
1995
fDate :
13-16 Aug 1995
Firstpage :
255
Abstract :
In this work, we propose a non-linear structure for self-learning equalization, which can be easily updated using the direct-decision error criterion. Such a structure consists of three different systems: an IIR predictor that provides the magnitude equalization, an automatic gain control and a non-linear phase equalizer. The paper presents a theoretical analysis for the proposed structure and some simulation results with severe channels
Keywords :
IIR filters; adaptive filters; automatic gain control; decision feedback equalisers; deconvolution; equalisers; prediction theory; IIR predictor; automatic gain control; direct-decision error criterion; magnitude equalization; nonlinear structure; phase equalizers; self-learning deconvolution; simulation results; Analytical models; Decision feedback equalizers; Deconvolution; Equalizers; Error correction; Finite impulse response filter; Gain control; IIR filters; Information retrieval; Nonlinear filters; Transfer functions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 1995., Proceedings., Proceedings of the 38th Midwest Symposium on
Conference_Location :
Rio de Janeiro
Print_ISBN :
0-7803-2972-4
Type :
conf
DOI :
10.1109/MWSCAS.1995.504426
Filename :
504426
Link To Document :
بازگشت