DocumentCode :
1855365
Title :
A blind sparse approach for estimating constraint matrices in Paralind data models
Author :
Caland, F. ; Miron, S. ; Brie, D. ; Mustin, C.
Author_Institution :
LIMOS, Nancy-Univ., Vandoeuvre-lès-Nancy, France
fYear :
2012
fDate :
27-31 Aug. 2012
Firstpage :
839
Lastpage :
843
Abstract :
In this paper we address the problem of estimating the interaction matrices of PARALIND decomposition. In general, this is an ill-posed problem admitting an infinite number of solutions. First we study the gain of imposing sparsity constraints on the interaction matrices, in terms of model identifiability. Then, we propose a new algorithm (S-PARALIND) for fitting the PARALIND model, using a ℓ2-ℓ1 optimization step for estimating the interaction matrix. This new approach provides more accurate and robust estimates of the constraint matrices than ALS-PARALIND, thus improving the interpretability of the PARALIND decomposition.
Keywords :
optimisation; sparse matrices; ℓ2-ℓ1 optimization; ALS-Paralind; Paralind data models; Paralind decomposition; blind sparse approach; constraint matrix estimation; interaction matrix estimation; parallel profiles with linear dependencies; Data models; Estimation; Matrix decomposition; Optimization; Signal processing; Sparse matrices; Vectors; ALS-Paralind; Parafac; Paralind/ Confac; S-Paralind; linear contraints; sparse;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing Conference (EUSIPCO), 2012 Proceedings of the 20th European
Conference_Location :
Bucharest
ISSN :
2219-5491
Print_ISBN :
978-1-4673-1068-0
Type :
conf
Filename :
6334207
Link To Document :
بازگشت