DocumentCode :
1859732
Title :
Mathematical equivalence of two ellipsoid algorithms for bounded-error estimation
Author :
Pronzato, Luc ; Walter, Eric ; Piet-Lahanier, Héléne
Author_Institution :
Lab. of Signals & Syst., CNRS, Gif-sur-Yvette, France
fYear :
1989
fDate :
13-15 Dec 1989
Firstpage :
1952
Abstract :
Bounded-error estimation aims at characterizing the set of all parameter vectors consistent with prior bounds on the errors between the measurements and model outputs. E. Fogel and Y.F. Huang (Autom., vol.18, no.2, p.229-39, 1982) have proposed a simple recursive construction of a minimal volume ellipsoidal outer bound for this set. The basic Fogel-Huang algorithm is not optimal, and a slight heuristic modification suggested by G. Belforte and B. Bona (Preprints 7th IFAC/IFORS Symp. on Identification and System Parameter Estimation, p.1507-12, 1985) has been shown to yield ellipsoids with smaller volumes. This modified algorithm is proved to be equivalent to an optimal ellipsoid algorithm developed in the context of linear programming
Keywords :
computational complexity; parameter estimation; Fogel-Huang algorithm; bounded-error estimation; computational complexity; ellipsoid algorithms; linear programming; mathematical equivalence; minimal volume ellipsoidal outer bound; parameter estimation; Ellipsoids; Heuristic algorithms; Iterative algorithms; Least squares approximation; Least squares methods; Linear programming; Q measurement; State estimation; System identification; Tin;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1989., Proceedings of the 28th IEEE Conference on
Conference_Location :
Tampa, FL
Type :
conf
DOI :
10.1109/CDC.1989.70505
Filename :
70505
Link To Document :
بازگشت