DocumentCode :
1863124
Title :
Optimal selection of model order for a class of nonlinear systems using the bootstrap
Author :
Zoubir, Abdelhak M. ; Ralston, Jonathon C. ; Iskander, D. Robert
Author_Institution :
Signal Processing Res. Centre, Queensland Univ. of Technol., Brisbane, Qld., Australia
Volume :
5
fYear :
1997
fDate :
21-24 Apr 1997
Firstpage :
3945
Abstract :
Nonlinear system identification involves selecting the order of the given model based on the input-output data. A bootstrap model selection procedure which selects the model by minimising bootstrap estimates of the prediction error is developed. Bootstrap based model selection procedures are attractive because the bootstrap observations generated for the model selection can also be used in subsequent inference procedures. The proposed method is simple and computationally efficient
Keywords :
Volterra series; error analysis; identification; nonlinear systems; optimisation; prediction theory; probability; signal processing; Hammerstein series; Volterra series; bootstrap estimates; bootstrap model selection; bootstrap observations; computationally efficient method; inference procedures; input-output data; nonlinear system identification; optimal model order selection; prediction error; probabilities; signal processing; Australia; Costs; Kernel; Nonlinear systems; Parameter estimation; Predictive models; Signal processing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on
Conference_Location :
Munich
ISSN :
1520-6149
Print_ISBN :
0-8186-7919-0
Type :
conf
DOI :
10.1109/ICASSP.1997.604781
Filename :
604781
Link To Document :
بازگشت