DocumentCode :
1863168
Title :
A skin detection algorithm based on discrete Cosine transform and generalized Gaussian density
Author :
Ghouzali, S. ; Hemami, S. ; Rziza, M. ; Aboutajdine, D. ; Mouaddib, E.M.
Author_Institution :
Sch. of Electr. & Comput. Eng., Cornell Univ., Ithaca, NY
fYear :
2008
fDate :
12-15 Oct. 2008
Firstpage :
605
Lastpage :
608
Abstract :
In this paper, we propose a highly efficient algorithm to model the human skin color. The underlying algorithm involves generating a discrete Cosine transform (DCT) at each pixel location, using the surrounding points. These DCT coefficients are assumed to follow a generalized Gaussian distribution (GGD). Next, the model parameters are estimated using the maximum-likelihood (ML) criterion applied to a set of training skin samples. Finally, each pixel is classified as skin or the opposite if its likelihood ratio is above some threshold. The experimental results show that our model avoids excessive false detection while still retaining a high degree of correct detection.
Keywords :
Gaussian distribution; discrete cosine transforms; image classification; image colour analysis; maximum likelihood estimation; object detection; Gaussian distribution; discrete Cosine transform; generalized Gaussian density; human skin color; maximum likelihood estimation; pixel location; skin detection algorithm; skin sample training; Color; Detection algorithms; Discrete cosine transforms; Face detection; Image segmentation; Maximum likelihood estimation; Pixel; Robustness; Shape; Skin; Discrete Cosine Transform; Generalized Gaussian distribution; Image segmentation; Skin detection;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2008. ICIP 2008. 15th IEEE International Conference on
Conference_Location :
San Diego, CA
ISSN :
1522-4880
Print_ISBN :
978-1-4244-1765-0
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2008.4711827
Filename :
4711827
Link To Document :
بازگشت