DocumentCode :
1864019
Title :
HLS parameter estimation for multi-input multi-output systems
Author :
Yuan, Ping ; Ding, Feng ; Liu, Peter X.
Author_Institution :
Control Sci. & Eng. Res. Center, Jiangnan Univ., Wuxi
fYear :
2008
fDate :
19-23 May 2008
Firstpage :
857
Lastpage :
861
Abstract :
In order to reduce computational burden of identification methods for multivariable systems, a hierarchical least squares (HLS) algorithm is developed. The basic idea is to use the hierarchical identification principle to decompose the identification model of the multivariable system into several submodels with smaller dimensions and fewer variables, and then to identify the parameter vector of each submodel. The analysis indicates that the parameter estimation error given by the proposed algorithm converges to zero under the persistent excitation. Also, the algorithm has much less computational efforts than the recursive least squares algorithm and is easy to implement on computer. Finally, we test the proposed algorithm by an example.
Keywords :
MIMO systems; hierarchical systems; least squares approximations; parameter estimation; state-space methods; hierarchical identification principle; hierarchical least squares algorithm; identification method; multiinput multioutput system; multivariable system; parameter estimation error; state-space model; Algorithm design and analysis; Computer errors; High level synthesis; Least squares approximation; Least squares methods; MIMO; Parameter estimation; Polynomials; Robotics and automation; USA Councils; Least squares identification; convergence properties; hierarchical identification principle; multivariable systems; parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on
Conference_Location :
Pasadena, CA
ISSN :
1050-4729
Print_ISBN :
978-1-4244-1646-2
Electronic_ISBN :
1050-4729
Type :
conf
DOI :
10.1109/ROBOT.2008.4543312
Filename :
4543312
Link To Document :
بازگشت