Title :
Kernel GMM and its application to image binarization
Author :
Wang, Jingdong ; Lee, Jianguo ; Zhang, Changshui
Author_Institution :
Dept. of Autom., Tsinghua Univ., Beijing, China
Abstract :
Gaussian mixture model (GMM) is an efficient method for parametric clustering. However, traditional GMM can´t perform clustering well on data set with complex structure such as images. In this paper, kernel trick, successfully used by SVM and kernel PCA, is introduced into EM algorithm for solving parameter estimation of GMM, which is so called kernel GMM (kGMM). The basic idea of kernel GMM is to apply kernel based GMM in feature space instead of in input data space. In order to avoid the curse of dimension, the proposed kGMM also embeds a step to automatically select discriminative features in feature space. kGMM is employed for the task of image binarization. Result shows that the proposed approach is feasible.
Keywords :
Gaussian processes; parameter estimation; pattern clustering; principal component analysis; support vector machines; Gaussian mixture model; data set; feature space; image binarization; kernel PCA; parameter estimation; parametric clustering; support vector machine; Automation; Clustering algorithms; Gray-scale; Histograms; Image processing; Kernel; Parameter estimation; Principal component analysis; Random variables; Support vector machines;
Conference_Titel :
Multimedia and Expo, 2003. ICME '03. Proceedings. 2003 International Conference on
Print_ISBN :
0-7803-7965-9
DOI :
10.1109/ICME.2003.1220972