DocumentCode :
1866099
Title :
Inverse filter criteria for estimation of linear parametric models using higher order statistics
Author :
Tugnait, Jitendra K.
Author_Institution :
Dept. of Electr. Eng., Auburn Univ., AL
fYear :
1991
fDate :
14-17 Apr 1991
Firstpage :
3101
Abstract :
The author considers the problem of estimating the parameters of a stable, scalar ARMA (autoregressive moving average) signal model (causal or noncausal, minimum phase or mixed phase) driven by an independent and identically distributed nonGaussian sequence. The driving noise sequence is not observed. The Wiggins-Donoho class of inverse filter criteria for estimation of model parameters are analyzed and extended to general ARMA inverses. A class of criteria for consistent parameter estimation in colored Gaussian noise is proposed and analyzed
Keywords :
filtering and prediction theory; parameter estimation; signal processing; statistical analysis; ARMA inverses; Wiggins-Donoho class; autoregressive moving average; causal signal; colored Gaussian noise; higher order statistics; identically distributed nonGaussian sequence; independent sequence; inverse filter criteria; linear parametric models; minimum phase; mixed phase; noncausal signal; parameter estimation; scalar ARMA; signal processing; Gaussian noise; Higher order statistics; Inverse problems; Noise measurement; Nonlinear filters; Parameter estimation; Parametric statistics; Phase estimation; Statistical analysis; Yield estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991 International Conference on
Conference_Location :
Toronto, Ont.
ISSN :
1520-6149
Print_ISBN :
0-7803-0003-3
Type :
conf
DOI :
10.1109/ICASSP.1991.150111
Filename :
150111
Link To Document :
بازگشت