DocumentCode :
1867297
Title :
Application of hidden Markov model topology estimation to repetitive lifting data
Author :
Vasko, Raymond C., Jr. ; El-Jaroudi, Amro ; Boston, J. Robert
Author_Institution :
Dept. of Electr. Eng., Pittsburgh Univ., PA, USA
Volume :
5
fYear :
1997
fDate :
21-24 Apr 1997
Firstpage :
4073
Abstract :
Vasko et al. (see IEEE Proc. ICASSP ´96, vol.6, p.3578-82, 1996) presented an algorithm that estimates the topology of a hidden Markov model (HMM) given a set of time series data. The algorithm iteratively prunes state transitions from a large general HMM topology and selects a topology based on a likelihood criterion and a heuristic evaluation of complexity. We apply the algorithm to estimate the dynamic structure of human body motion data from a repetitive lifting task. The estimated topology for low back pain patients was different from the topology for a control subject group. The body motions of patients tend not to change over the task, but the body motions of control subjects change systematically
Keywords :
biomechanics; correlation methods; hidden Markov models; medical signal processing; parameter estimation; patient treatment; time series; HMM topology estimation; complexity; control subject group; dynamic structure estimation; heuristic evaluation; hidden Markov model; human body motion data; likelihood criterion; low back pain patients; patient treatment; repetitive lifting data; state transitions; time series data; Control systems; Hidden Markov models; Hip; Iterative algorithms; Knee; Medical treatment; Motion control; Motion estimation; Pain; Topology;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on
Conference_Location :
Munich
ISSN :
1520-6149
Print_ISBN :
0-8186-7919-0
Type :
conf
DOI :
10.1109/ICASSP.1997.604841
Filename :
604841
Link To Document :
بازگشت