DocumentCode :
1867996
Title :
Active Learning of Instance-Level Constraints for Semi-supervised Document Clustering
Author :
Zhao, Weizhong ; He, Qing ; Ma, Huifang ; Shi, Zhongzhi
Volume :
1
fYear :
2009
fDate :
15-18 Sept. 2009
Firstpage :
264
Lastpage :
268
Abstract :
This paper presents a framework that actively selects informative documents pairs for semi-supervised document clustering. The semi-supervised document clustering algorithm is a Constrained DBSCAN (Cons-DBSCAN), which incorporates instance-level constraints to guide the clustering process in DBSCAN. By obtaining user feedbacks, our proposed active learning algorithm can get informative instance level constraints to aid clustering process. Experimental results show that Cons-DBSCAN with the proposed active learning approach can provide an appealing clustering performance.
Keywords :
Clustering algorithms; Computers; Conferences; Data mining; Feedback; Information processing; Intelligent agent; Learning systems; Machine learning; Active Learning; Document Clustering; Instance-level Constraint; Semi-supervised Clustering;
fLanguage :
English
Publisher :
iet
Conference_Titel :
Web Intelligence and Intelligent Agent Technologies, 2009. WI-IAT '09. IEEE/WIC/ACM International Joint Conferences on
Conference_Location :
Milan, Italy
Print_ISBN :
978-0-7695-3801-3
Electronic_ISBN :
978-1-4244-5331-3
Type :
conf
DOI :
10.1109/WI-IAT.2009.45
Filename :
5286064
Link To Document :
بازگشت