DocumentCode :
1868852
Title :
Network calculus based simulation for TCP congestion control: theorems, implementation and evaluation
Author :
Kim, Hwangnam ; Hou, Jennifer C.
Author_Institution :
Dept. of Comput. Sci., Illinois Univ., Urbana, IL, USA
Volume :
4
fYear :
2004
fDate :
7-11 March 2004
Firstpage :
2844
Abstract :
In this paper, we examine the feasibility of incorporating network calculus based models in simulating TCP/IP networks. By exploiting network calculus properties, we characterize how TCP congestion control - additive increase and multiplicative decrease (AIMD), together with the queue management strategy used in routers, regulates TCP flows. We first divide the time axis into intervals (each of which consists of multiple round-trip times), and derive a TCP AIMD throughput model which derives the attainable throughput of a TCP flow, given the number of collisions in an interval. Then based on the derived throughput model, we define a set of network calculus based theorems that give upper and lower bounds on the attainable TCP throughput in each interval. Finally, we implement network calculus (NC) based simulation in ns-2, conduct simulation in both the packet mode and the network calculus-based mode, and measure the performance gain (in terms of the execution time thus reduced) and the error discrepancy (in terms of the discrepancy between NC-based simulation results and packet-level simulation results). The simulation results indicate an order of magnitude or more (maximally 30 times) improvement in execution time and the performance improvement becomes more pronounced as the network size increases (in perspective of network capacities and number of flows). The error discrepancy between NC-based simulation and packet-level simulation, on the other hand, is minimally 1-2% and maximally 8-12% in a wide spectrum of network topologies and traffic loads employed in this study. The simulation results also indicate the superiority of NC-based simulation over fluid model based simulation (the latter realized using the time stepped hybrid simulation).
Keywords :
IP networks; computer network management; queueing theory; telecommunication congestion control; telecommunication network routing; telecommunication network topology; telecommunication traffic; transport protocols; NC-based simulation; TCP congestion control; TCP-IP network; additive increase and multiplicative decrease model; fluid model based simulation; network calculus based model; network topology; packet-level simulation; queue management; router; traffic load; Additives; Calculus; Gain measurement; IP networks; Network topology; Performance gain; TCPIP; Telecommunication traffic; Throughput; Time measurement;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies
ISSN :
0743-166X
Print_ISBN :
0-7803-8355-9
Type :
conf
DOI :
10.1109/INFCOM.2004.1354701
Filename :
1354701
Link To Document :
بازگشت