DocumentCode :
1869186
Title :
Optimal weighted LS AR estimation in presence of impulsive noise
Author :
Di Claudio, E.D. ; Orlandi, G. ; Piazza, F. ; Uncini, A.
Author_Institution :
Telettra SpA, Chieti Scalo, Italy
fYear :
1991
fDate :
14-17 Apr 1991
Firstpage :
3149
Abstract :
A procedure for assigning optimal weights to the prediction equations which are used to obtain the parameters of an autoregressive (AR) model for spectrum estimation by the least squares (LS) solution is presented. The set of weights is computed, by linear programming techniques, in order to reduce the effects of strong impulsive noise onto the AR parameter estimate. The method is particularly effective when the Gaussian white noise component is much smaller than both spikes and useful signal. In order to demonstrate the capability of the proposed approach, the results of a simple AR parameter estimation experiment are also reported
Keywords :
least squares approximations; noise; parameter estimation; spectral analysis; Gaussian white noise component; least squares autoregressive model; linear programming; optimal weights; parameter estimation; prediction equations; spectrum estimation; strong impulsive noise; Dynamic range; Equations; Filtering algorithms; Least squares approximation; Linear programming; Minimization methods; Noise reduction; Parameter estimation; Vectors; White noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991 International Conference on
Conference_Location :
Toronto, Ont.
ISSN :
1520-6149
Print_ISBN :
0-7803-0003-3
Type :
conf
DOI :
10.1109/ICASSP.1991.150123
Filename :
150123
Link To Document :
بازگشت