DocumentCode :
1871800
Title :
A Bayesian approach to empirical local linearization for robotics
Author :
Ting, J.-A. ; Souza, Aaron D. ; Vijayakumar, Sethu ; Schaal, Stefan
Author_Institution :
Comput. Sci., Univ. of Southern California, Los Angeles, CA
fYear :
2008
fDate :
19-23 May 2008
Firstpage :
2860
Lastpage :
2865
Abstract :
Local linearizations are ubiquitous in the control of robotic systems. Analytical methods, if available, can be used to obtain the linearization, but in complex robotics systems where the dynamics and kinematics are often not faithfully obtainable, empirical linearization may be preferable. In this case, it is important to only use data for the local linearization that lies within a "reasonable" linear regime of the system, which can be defined from the Hessian at the point of the linearization- a quantity that is not available without an analytical model. We introduce a Bayesian approach to solve statistically what constitutes a "reasonable" local regime. We approach this problem in the context local linear regression. In contrast to previous locally linear methods, we avoid cross-validation or complex statistical hypothesis testing techniques to find the appropriate local regime. Instead, we treat the parameters of the local regime probabilistically and use approximate Bayesian inference for their estimation. The approach results in an analytical set of iterative update equations that are easily implemented on real robotics systems for real-time applications. As in other locally weighted regressions, our algorithm also lends itself to complete nonlinear function approximation for learning empirical internal models. We sketch the derivation of our Bayesian method and provide evaluations on synthetic data and actual robot data where the analytical linearization was known.
Keywords :
Bayes methods; function approximation; robots; Bayesian approach; local linearization; nonlinear function approximation; robotics; Analytical models; Bayesian methods; Control systems; Function approximation; Iterative methods; Kinematics; Linear regression; Nonlinear equations; Robot control; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on
Conference_Location :
Pasadena, CA
ISSN :
1050-4729
Print_ISBN :
978-1-4244-1646-2
Electronic_ISBN :
1050-4729
Type :
conf
DOI :
10.1109/ROBOT.2008.4543643
Filename :
4543643
Link To Document :
بازگشت