Title :
Retraining maximum likelihood classifiers using a low-rank model
Author :
Salberg, Arnt-Børre
Author_Institution :
Dept. SAMBA, Norwegian Comput. Center, Oslo, Norway
Abstract :
In this paper we propose a method for retraining a maximum likelihood classifier such that it may be applied to cases when the data distribution of the test data is different from the training data distributions. The proposed approach for retraining the classifier to the test data distribution is based on a constrained low-rank modeling of the unknown parameters, and may be designed such that the class structure is (to a larger degree) maintained after retraining. The proposed methodology is evaluated on two different applications; (1) cloud detection in Quickbird and WorldView-2 images and (2) tree cover mapping of tropical forest. The results show that the retrained classifiers clearly outperform their non-retrained counterpart.
Keywords :
clouds; forestry; geophysical image processing; image classification; maximum likelihood estimation; Quickbird; WorldView-2 images; cloud detection; constrained low-rank modeling; data distribution; maximum likelihood classifier retraining; tree cover mapping; tropical forest; Clouds; Covariance matrix; Data models; Training; Training data; Vectors; Vegetation;
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International
Conference_Location :
Vancouver, BC
Print_ISBN :
978-1-4577-1003-2
DOI :
10.1109/IGARSS.2011.6048958