DocumentCode :
1871854
Title :
Efficient image matching using concentric sampling features and boosting process
Author :
Wu, Pin ; Hsieh, Jun-Wei
Author_Institution :
Yuan Ze Univ., Chungli
fYear :
2008
fDate :
12-15 Oct. 2008
Firstpage :
2004
Lastpage :
2007
Abstract :
This paper presents a novel template matching method to efficiently match and search image patterns. The method using concentric sampling structures, boosting process, and coarse-to-fine framework, differs from the traditional pattern matching schemes of time-exhausting correlation. The time complexity at searching stage is invariant to the dimension of concerned patterns. The rotation-invariant collection of concentric sub-samples represents as a reliable relaxation process of weak beliefs to efficiently reject the impossible location candidates. The concentric sampling approximation of integral images and the hierarchical scheme enable sifting out the patterns to process with the reduced complexity. Experimental result demonstrates the real-time performance on efficient pattern detection and geometry parameter estimation and the flexibility (on translation-, scaling-, and rotation-variant patterns) for various image analysis applications.
Keywords :
approximation theory; image matching; image sampling; boosting process; coarse-to-fine framework; concentric sampling feature approximation; geometry parameter estimation; image matching; pattern detection; rotation-invariant collection; template matching; Boosting; Feature extraction; Geometry; Image analysis; Image matching; Image registration; Image sampling; Impedance matching; Parameter estimation; Pattern matching; Pattern matching; boosting; feature extraction; integral feature; template matching;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2008. ICIP 2008. 15th IEEE International Conference on
Conference_Location :
San Diego, CA
ISSN :
1522-4880
Print_ISBN :
978-1-4244-1765-0
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2008.4712177
Filename :
4712177
Link To Document :
بازگشت