DocumentCode :
1871954
Title :
Semi-supervised LDA by labelling words
Author :
Dong-mei Yang ; Hui Zheng ; Ji-kun Yan ; Ye Jin
Author_Institution :
Science and Technology on Blind Signal Processing Laboratory, Mail Box No.666, Chengdu, China, 610041
fYear :
2012
fDate :
3-5 March 2012
Firstpage :
1826
Lastpage :
1829
Abstract :
We propose a new semi-supervised learning technique, which is called Words labelled Semi-Supervised Latent Dirichlet Allocation (wssLDA) by labelling words for large text collections analysis. The model incorporates supervision with Latent Dirichlet Allocation by adjusting weights of topic words chosen by users. Results with perplexity for documents and F-measure for clustering show the improvements for the topic learning and document analysis tasks.
Keywords :
Gibbs sampling; LDA; semi-supervised;
fLanguage :
English
Publisher :
iet
Conference_Titel :
Automatic Control and Artificial Intelligence (ACAI 2012), International Conference on
Conference_Location :
Xiamen
Electronic_ISBN :
978-1-84919-537-9
Type :
conf
DOI :
10.1049/cp.2012.1346
Filename :
6492953
Link To Document :
بازگشت