DocumentCode :
1872398
Title :
Evolving spiking neural networks for spatio-and spectro-temporal pattern recognition
Author :
Kasabov, Nikola
Author_Institution :
Knowledge Eng. & Discovery Res. Inst. - KEDRI, Auckland Univ. of Technol., Auckland, New Zealand
fYear :
2012
fDate :
6-8 Sept. 2012
Firstpage :
27
Lastpage :
32
Abstract :
This paper provides a survey on the evolution of the evolving connectionist systems (ECOS) paradigm, from simple ECOS introduced in 1998 to evolving spiking neural networks (eSNN) and neurogenetic systems. It presents methods for their use for spatio-and spectro temporal pattern recognition. Future directions are highlighted.
Keywords :
genetics; neural net architecture; neurophysiology; pattern recognition; spatiotemporal phenomena; ECOS paradigm; eSNN; evolving connectionist systems paradigm; evolving spiking neural networks; neurogenetic systems; spatio-temporal pattern recognition; spectro-temporal pattern recognition; Adaptation models; Biological system modeling; Brain models; Computational modeling; Data models; Neurons; Computational Neurogenetic Systems (CNGS); Evolving Connectionist Systems (ECOS); Evolving Spiking Neural Networks (eSNN); quantum inspired SNN; spatio-temporal pattern recognition; spectro-temporal pattern recognition;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Systems (IS), 2012 6th IEEE International Conference
Conference_Location :
Sofia
Print_ISBN :
978-1-4673-2276-8
Type :
conf
DOI :
10.1109/IS.2012.6335110
Filename :
6335110
Link To Document :
بازگشت