DocumentCode :
1872665
Title :
Extended object tracking with convolution particle filtering
Author :
Angelova, Donka ; Mihaylova, Lyudmila ; Petrov, Nikolay ; Gning, Amadou
Author_Institution :
Bulgarian Acad. of Sci., Sofia, Bulgaria
fYear :
2012
fDate :
6-8 Sept. 2012
Firstpage :
96
Lastpage :
101
Abstract :
This paper proposes a sequential Monte Carlo filter (particle filter) for state and parameter estimation of dynamic systems. It is applied to the problem of extended object tracking in the presence of dense clutter. The unknown length of a stick-shape object is estimated in addition to the kinematic parameters. The kernel density estimation technique is utilised to approximate the joint posterior density of target state and static size parameters. The convolution particle filtering approach is validated on a Poisson model for the measurements, originating from the target and clutter. Examples illustrating the filter performance are presented. Simulation results show that the convolution particle filter provides accurate on-line tracking, with very good estimates both for the target kinematic states and for the parameters of the target extent.
Keywords :
Monte Carlo methods; Poisson distribution; approximation theory; clutter; convolution; object tracking; parameter estimation; particle filtering (numerical methods); state estimation; target tracking; Poisson model; convolution particle filtering; dense clutter; dynamic systems; extended object tracking; filter performance; joint posterior density approximation; kernel density estimation technique; kinematic parameters; online tracking; parameter estimation; sequential Monte Carlo filter; state estimation; static size parameters; stick-shape object; target kinematic states; unknown length estimation; Clutter; Convolution; Kernel; Kinematics; Noise; Sensors; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Systems (IS), 2012 6th IEEE International Conference
Conference_Location :
Sofia
Print_ISBN :
978-1-4673-2276-8
Type :
conf
DOI :
10.1109/IS.2012.6335120
Filename :
6335120
Link To Document :
بازگشت