DocumentCode :
1882623
Title :
Attribute value weighting in K-modes clustering for Y-short tandem repeats (Y-STR) surname
Author :
Seman, Ali ; Bakar, Z.A. ; Sapawi, Azizian Mohd.
Author_Institution :
Center for Comput. Sci. Studies, Univ. Teknol. MARA (UiTM), Shah Alam, Malaysia
Volume :
3
fYear :
2010
fDate :
15-17 June 2010
Firstpage :
1531
Lastpage :
1536
Abstract :
This paper evaluates Y-STR Surname data for attribute value weighting in k-Modes clustering algorithm. Three categories weighting schemas: (1) Relative Value Frequency (RVF); (2) Uncommon Attribute Value Matches (UAVM); (3) Hybrid weighting schema are evaluated for Y-STR Surname data. The overall results show that the clustering accuracy of all methods produces in between 40-44% only. However, the idea of adapting a weighting schema still looks a promising method in order to improve the clustering accuracy for Y-STR data.
Keywords :
pattern clustering; K-modes clustering; Y-short tandem repeats surname; attribute value weighting; hybrid weighting schema; relative value frequency; uncommon attribute value matches; Accuracy; Algorithm design and analysis; Classification algorithms; Clustering algorithms; Computer science; Helium; Weight measurement; K-modes algorithm; Y-STR; attribute value weighting; categorical data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Technology (ITSim), 2010 International Symposium in
Conference_Location :
Kuala Lumpur
ISSN :
2155-897
Print_ISBN :
978-1-4244-6715-0
Type :
conf
DOI :
10.1109/ITSIM.2010.5561471
Filename :
5561471
Link To Document :
بازگشت