DocumentCode :
1882646
Title :
A methodology of forest monitoring from hyperspectral images with sparse regularization
Author :
Yoshida, Keigo ; Ohki, Takashi ; Terabe, Masahiro ; Sekine, Hozuma ; Takeda, Tomomi
Author_Institution :
Mitsubishi Res. Inst., Inc., Tokyo, Japan
fYear :
2011
fDate :
24-29 July 2011
Firstpage :
1565
Lastpage :
1568
Abstract :
This paper presents a methodology to extract information on existing conditions of a forest from hyperspectral images and SAR images for the forest management. To overcome the difficulties in hyperspectral image analysis such as optimal band selection and model overfitting, a machine learning technique called sparse regularization was adopted. Experimental results show the effectiveness of this approach.
Keywords :
geophysical image processing; learning (artificial intelligence); remote sensing by radar; synthetic aperture radar; vegetation; SAR images; forest management; forest monitoring; hyperspectral images; machine learning technique; model overfitting; optimal band selection; sparse regularization; Accuracy; Hyperspectral imaging; Monitoring; Predictive models; Vegetation; Forest management; Hyperspectral imaging; Machine learning; Sensor fusion; Sparse regularization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International
Conference_Location :
Vancouver, BC
ISSN :
2153-6996
Print_ISBN :
978-1-4577-1003-2
Type :
conf
DOI :
10.1109/IGARSS.2011.6049369
Filename :
6049369
Link To Document :
بازگشت