Title :
Families of Smith form decompositions to simplify multidimensional filter bank design
Author :
Evans, Brian L. ; Teich, Jürgen ; Kalker, Ton A.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA
fDate :
31 Oct-2 Nov 1994
Abstract :
Imposing structure on the Smith form of an (integer) periodicity matrix N=UΛV leads to efficient m-D DFT implementations. For resampling matrices, i.e. non-singular rational matrices, the authors introduce Smith form decomposition algorithms to generate Λ matrices whose diagonal elements exhibit minimum variance and U matrices with minimum norm. Such structure simplifies non-uniform m-D filter bank design
Keywords :
discrete Fourier transforms; matrix decomposition; minimisation; multidimensional digital filters; signal sampling; Λ matrices; Smith form decompositions; U matrices; diagonal elements; integer periodicity matrix; m-D DFT implementations; minimum norm; minimum variance; multidimensional filter bank design; nonsingular rational matrices; nonuniform m-D filter bank design; resampling matrices; Electronic mail; Filter bank; Hardware; Laboratories; Matrix decomposition; Multidimensional signal processing; Multidimensional systems; Signal processing algorithms; Signal sampling; Unmanned aerial vehicles;
Conference_Titel :
Signals, Systems and Computers, 1994. 1994 Conference Record of the Twenty-Eighth Asilomar Conference on
Conference_Location :
Pacific Grove, CA
Print_ISBN :
0-8186-6405-3
DOI :
10.1109/ACSSC.1994.471477