DocumentCode :
18843
Title :
Visualization of Uncertainty without a Mean
Author :
Potter, Kristin ; Gerber, S. ; Anderson, E.W.
Volume :
33
Issue :
1
fYear :
2013
fDate :
Jan.-Feb. 2013
Firstpage :
75
Lastpage :
79
Abstract :
As dataset size and complexity steadily increase, uncertainty is becoming an important data aspect. So, today´s visualizations need to incorporate indications of uncertainty. However, characterizing uncertainty for visualization isn´t always straightforward. Entropy, in the information-theoretic sense, can be a measure for uncertainty in categorical datasets. The authors discuss the mathematical formulation, interpretation, and use of entropy in visualizations. This research aims to demonstrate entropy as a metric and expand the vocabulary of uncertainty measures for visualization.
Keywords :
data visualisation; entropy; categorical dataset; data aspect; entropy; information theory; uncertainty measure; uncertainty visualization; Data visualization; Entropy; Image color analysis; Magnetic resonance imaging; Measurement uncertainty; Uncertainty; Visualization; Data visualization; Entropy; Image color analysis; Magnetic resonance imaging; Measurement uncertainty; Uncertainty; Visualization; color mapping; computer graphics; entropy; uncertainty; volume rendering;
fLanguage :
English
Journal_Title :
Computer Graphics and Applications, IEEE
Publisher :
ieee
ISSN :
0272-1716
Type :
jour
DOI :
10.1109/MCG.2013.14
Filename :
6415481
Link To Document :
بازگشت