Title :
Highly Efficient Identification Methods for Dual-Rate Hammerstein Systems
Author :
Dong-Qing Wang ; Hua-Bo Liu ; Feng Ding
Author_Institution :
Coll. of Autom. Eng., Qingdao Univ., Qingdao, China
Abstract :
This brief concerns parameter identification for a dual-rate Hammerstein CARMA system. By combining the polynomial transformation technique and the hierarchical identification principle, this brief transforms a dual-rate nonlinear Hammerstein CARMA system into a bilinear dual-rate identification model, and presents a hierarchical least squares algorithm to estimate the parameter vectors of the bilinear dual-rate identification model. Moreover, by using the key term separation principle, this brief transforms the dual-rate nonlinear Hammerstein CARMA system into a linear dual-rate identification model, and presents a key term separation based least squares algorithm to estimate the parameter vector of the linear dual-rate identification model. The two proposed methods possess higher computational efficiency compared with the previous over-parameterization least squares method in which many redundant parameters need estimating. The simulation results show the effectiveness of the two proposed algorithms.
Keywords :
bilinear systems; least squares approximations; nonlinear control systems; parameter estimation; polynomials; bilinear dual-rate identification model; dual-rate nonlinear Hammerstein CARMA system; hierarchical identification principle; hierarchical least squares algorithm; identification methods; key term separation principle; parameter identification; parameter vectors estimation; polynomial transformation technique; Computational modeling; Cost function; Least squares approximations; Parameter estimation; Polynomials; Transforms; Vectors; Dual-rate; Hammerstein systems; hierarchical identification principle; key term separation principle; least squares; parameter estimation; parameter estimation.;
Journal_Title :
Control Systems Technology, IEEE Transactions on
DOI :
10.1109/TCST.2014.2387216