DocumentCode :
1885991
Title :
Bounding the performance of neural network estimators, given only a set of training data
Author :
Liang, Weibo ; Manry, Michael T. ; Yu, Qiang ; Apollo, Steven J. ; Dawson, Michael S. ; Fung, Adrian K.
Author_Institution :
Dept. of Electr. Eng., Texas Univ., Arlington, TX, USA
Volume :
2
fYear :
1994
fDate :
31 Oct-2 Nov 1994
Firstpage :
912
Abstract :
Uses a neural network method for obtaining a stochastic Cramer-Rao bound on estimates, given only the training data. The Cramer-Rao bounds can be used (1) to help determine when neural net training should be stopped, (2) to re-order the network inputs according to their contributions to the bounds, and (3) to eliminate less useful inputs. The convergence of the modelling procedure is shown. Examples are provided to illustrate the method
Keywords :
convergence; estimation theory; learning (artificial intelligence); multilayer perceptrons; signal detection; stochastic processes; convergence; modelling procedure; network inputs; neural network estimators; performance; stochastic Cramer-Rao bound; training data; Convergence; Equations; Estimation theory; Maximum likelihood estimation; Multilayer perceptrons; Neural networks; Parameter estimation; Postal services; Stochastic processes; Training data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems and Computers, 1994. 1994 Conference Record of the Twenty-Eighth Asilomar Conference on
Conference_Location :
Pacific Grove, CA
ISSN :
1058-6393
Print_ISBN :
0-8186-6405-3
Type :
conf
DOI :
10.1109/ACSSC.1994.471593
Filename :
471593
Link To Document :
بازگشت