Title :
Theoretical study of dislocations in highly mismatched III-V epitaxial heterostructures
Author :
Masuda-Jindo, K. ; Kikuchi, R.
Author_Institution :
Dept. of Mater. Sci. & Eng., Tokyo Inst. of Technol., Yokohama, Japan
Abstract :
Using the tight-binding molecular dynamics (TBMD) method, we study the atomistic properties of strain included dislocations, both 60° and 90° types, in medium and highly mismatched III-V semiconductor heterostructures, like InGaAs/GaAs, InP/GaAs and InP/Si systems. The atomic diffusion in the semiconductor interface is investigated via vacancy mechanism of diffusion using the path probability method (PPM). The critical layer thickness for the generation of the misfit dislocations is also estimated and compared with the experimental results.
Keywords :
III-V semiconductors; dislocation structure; elemental semiconductors; gallium arsenide; indium compounds; interface structure; molecular dynamics method; semiconductor heterojunctions; silicon; surface diffusion; tight-binding calculations; vacancies (crystal); InGaAs-GaAs; InGaAs/GaAs; InP-GaAs; InP-Si; InP/GaAs; InP/Si; atomic diffusion; atomistic properties; critical layer thickness; dislocations; highly mismatched III-V epitaxial heterostructures; misfit dislocations; path probability method; semiconductor interface; strain included dislocations; tight-binding molecular dynamics method; vacancy mechanism; Atomic layer deposition; Capacitive sensors; Gallium arsenide; III-V semiconductor materials; Indium phosphide; Materials science and technology; Mechanical factors; Minerals; Residual stresses; Thermodynamics;
Conference_Titel :
Indium Phosphide and Related Materials Conference, 2002. IPRM. 14th
Print_ISBN :
0-7803-7320-0
DOI :
10.1109/ICIPRM.2002.1014371