DocumentCode :
1888713
Title :
Human Appearance Change Detection
Author :
Ghanem, Nagia M. ; Davis, Larry S.
Author_Institution :
Univ. of Maryland, College Park
fYear :
2007
fDate :
10-14 Sept. 2007
Firstpage :
536
Lastpage :
541
Abstract :
We present a machine learning approach to detect changes in human appearance between instances of the same person that may be taken with different cameras, but over short periods of time. For each video sequence of the person, we approximately align each frame in the sequence and then generate a set of features that captures the differences between the two sequences. The features are the occupancy difference map, the codeword frequency difference map (based on a vector quantization of the set of colors and frequencies) at each aligned pixel and the histogram intersection map. A boosting technique is then applied to learn the most discriminative set of features, and these features are then used to train a support vector machine classifier to recognize significant appearance changes. We apply our approach to the problem of left package detection. We train the classifiers on a laboratory database of videos in which people are seen with and without common articles that people carry - backpacks and suitcases. We test the approach on some real airport video sequences. Moving to the real world videos requires addressing additional problems, including the view selection problem and the frame selection problem.
Keywords :
image recognition; image sequences; learning (artificial intelligence); pattern classification; support vector machines; vector quantisation; video surveillance; appearance changes recognition; boosting technique; codeword frequency difference map; histogram intersection map; human appearance change detection; image sequence; left package detection; machine learning approach; occupancy difference map; support vector machine classifier; vector quantization; video sequences; Boosting; Cameras; Frequency; Histograms; Humans; Machine learning; Support vector machine classification; Support vector machines; Vector quantization; Video sequences;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Analysis and Processing, 2007. ICIAP 2007. 14th International Conference on
Conference_Location :
Modena
Print_ISBN :
978-0-7695-2877-9
Type :
conf
DOI :
10.1109/ICIAP.2007.4362833
Filename :
4362833
Link To Document :
بازگشت