• DocumentCode
    1892386
  • Title

    Autocorrelation-based algorithm for ARMA model order selection in colored gaussian noise

  • Author

    Al-Smadi, Adnan

  • Author_Institution
    Dept. of Electron. Eng., Yarmouk Univ., Irbid
  • fYear
    2005
  • fDate
    17-20 July 2005
  • Firstpage
    211
  • Lastpage
    214
  • Abstract
    In this paper, we have addressed the ARMA model order selection problem for the case of colored Gaussian noise using autocorrelation. The most well known solutions for the ARMA model order problem are the Akiake information criterion (AIC), the minimum description length (MDL), and the minimum eigenvalue (MEV) criterion. In the MEV method, observation and/or modeling error is assumed to be zero-mean while Gaussian. This paper presents a generalization of the original results in the MEV method to the colored Gaussian noise for the second order statistics. Simulations show the performance of the generalization results
  • Keywords
    Gaussian noise; autoregressive moving average processes; correlation methods; eigenvalues and eigenfunctions; higher order statistics; signal processing; AIC; ARMA model order selection problem; Akiake information criterion; MDL; MEV; autocorrelation; autoregressive moving average process; colored Gaussian noise; minimum description length; minimum eigenvalue criterion; second order statistics; Autocorrelation; Autoregressive processes; Eigenvalues and eigenfunctions; Gaussian noise; Gaussian processes; Parameter estimation; Parametric statistics; Signal processing; Signal processing algorithms; System identification;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Statistical Signal Processing, 2005 IEEE/SP 13th Workshop on
  • Conference_Location
    Novosibirsk
  • Print_ISBN
    0-7803-9403-8
  • Type

    conf

  • DOI
    10.1109/SSP.2005.1628593
  • Filename
    1628593