DocumentCode :
1893210
Title :
Change-point detection in astronomical data by using a hierarchical model and a bayesian sampling approach
Author :
Dobigeon, Nicolas ; Tourneret, Jean-Yves ; Scargle, Jeffrey D.
Author_Institution :
IRIT/ENSEEIHT/TeSA, Toulouse
fYear :
2005
fDate :
17-20 July 2005
Firstpage :
369
Lastpage :
374
Abstract :
Detection of significant intensity variations in astronomical time-series can be achieved with a hierarchical Bayesian approach to a piecewise constant Poisson rate model. A Gibbs sampling strategy allows joint estimation of the unknown parameters and hyperparameters. Results with real and synthetic photon counting data illustrate the performance of the proposed algorithm. An extension to joint segmentation of multiple time series is also discussed
Keywords :
Bayes methods; parameter estimation; piecewise constant techniques; signal detection; signal sampling; stochastic processes; time series; Gibbs sampling strategy; astronomical data; change-point detection; hierarchical Bayesian sampling approach; hyperparameter estimation; multiple time series; parameter estimation; photon counting data; piecewise constant Poisson rate model; Bayesian methods; Image sampling; Image segmentation; Inference algorithms; Iterative algorithms; Maximum likelihood detection; Maximum likelihood estimation; NASA; Parameter estimation; Sampling methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing, 2005 IEEE/SP 13th Workshop on
Conference_Location :
Novosibirsk
Print_ISBN :
0-7803-9403-8
Type :
conf
DOI :
10.1109/SSP.2005.1628623
Filename :
1628623
Link To Document :
بازگشت