Title :
Linear methods for TFARNA parameter estimation and system approximation
Author :
Jachan, M. ; Hlawatsch, Franz ; Matz, Gerald
Author_Institution :
Inst. of Commun. & Radio-Frequency Eng., Vienna Univ. of Technol.
Abstract :
Time-frequency autoregressive moving-average (TFARMA) models have recently been introduced as parsimonious parametric models for underspread nonstationary random processes. In this paper, we propose linear TFARMA and TFMA parameter estimators based on a high-order TFAR model. These estimators extend the Graupe-Krause-Moore and Durbin methods for time-invariant parameter estimation to underspread nonstationary processes. We also derive linear methods for approximating an underspread time-varying linear system by a TFARMA-type system. The linear equations obtained have Toeplitz/block-Toeplitz structure and thus can be solved efficiently by the Wax-Kailath algorithm. Simulation results demonstrate the performance of the proposed methods
Keywords :
approximation theory; autoregressive moving average processes; parameter estimation; random processes; time-frequency analysis; Durbin methods; Graupe-Krause-Moore methods; TFARMA parameter estimation; Wax-Kailath algorithm; block-Toeplitz structure; linear methods; parsimonious parametric models; system approximation; time-frequency autoregressive moving-average; time-invariant parameter estimation; underspread nonstationary random processes; Delay; Equations; Filtering; Linear systems; Nonlinear filters; Parameter estimation; Radio frequency; Random processes; Technological innovation; Time frequency analysis;
Conference_Titel :
Statistical Signal Processing, 2005 IEEE/SP 13th Workshop on
Conference_Location :
Novosibirsk
Print_ISBN :
0-7803-9403-8
DOI :
10.1109/SSP.2005.1628723