DocumentCode :
1897003
Title :
Separation of polynomial post non-linear mixtures of discrete sources
Author :
Lachover, B. ; Yeredor, Arie
Author_Institution :
Sch. of Electr. Eng., Tel Aviv Univ.
fYear :
2005
fDate :
17-20 July 2005
Firstpage :
1126
Lastpage :
1131
Abstract :
We consider the problem of blind estimation of the parameters of noisy non-linear mixtures of sources with unknown discrete alphabets. The nonlinear mixtures are modeled using the "post non-linear" model, in which the source signal undergo a linear mixture first, and then each mixed signal undergoes an unknown nonlinear transformation. The individual nonlinear transformations are modeled in this paper as second-order polynomials, whose parameters are unknown. Using the estimate-maximize algorithm, we derive estimators for all the unknown parameters. We also computed the Cramer-Rao lower bound for the estimation, to which the obtained mean squared estimation error is empirically compared
Keywords :
blind source separation; mean square error methods; polynomials; Cramer-Rao lower bound; blind estimation; discrete sources; estimate-maximize algorithm; mean squared estimation error; noisy nonlinear mixtures; nonlinear transformations; polynomial post nonlinear mixtures; second-order polynomials; Blind source separation; Context modeling; Mutual information; Nonlinear distortion; Parameter estimation; Polynomials; Probability distribution; Source separation; Sufficient conditions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing, 2005 IEEE/SP 13th Workshop on
Conference_Location :
Novosibirsk
Print_ISBN :
0-7803-9403-8
Type :
conf
DOI :
10.1109/SSP.2005.1628764
Filename :
1628764
Link To Document :
بازگشت