Title :
Novel nano-hybrid gas sensor based on n-TiO2 functionalized by phthalocyanines via supersonic beam co-deposition: Performance and application to automotive air quality
Author :
Iannotta, S. ; Toccoli, T. ; Tonezzer, M. ; Pallaoro, A. ; Corradi, C. ; Mazzola, M. ; Coppedè, N. ; Siviero, F. ; Iannotta, S. ; Forleo, A. ; Siciliano, P. ; Lattore, M. ; Marzorati, D.
Author_Institution :
Ist. di Fotonica e Nanotecnol., IFN-CNR, Trento
Abstract :
Supersonic beams of TiO2 clusters and metal phthalocyanines have been developed for the synthesis of hybrid for gas-sensing applications. This approach allows high degree of control on the properties of the synthesized materials and on the interface between clusters and organic molecules, so that new functional materials with novel and promising sensing properties are obtained. These materials can be synthesized in different architectures, shape and phases, and are constituted by nanocrystalline clusters of TiO2 functionalized during the growth by the co-deposited molecules. The outcome is a porous nanostructured material characterized by a diffused organic-inorganic interface at the nanoscale. The properties of the codeposited interfaces, where the functionalization of the hybrid material plays a crucial role, can be tailored directly acting on the beam parameters of the cluster (mass size distribution, phase) and of the organic molecules (kinetic energy, deposition rate).
Keywords :
gas sensors; nanosensors; nanostructured materials; automotive air quality; nanocrystalline clusters; nanohybrid gas sensor; porous nanostructured material; supersonic beam co-deposition; Automotive engineering; Gas detectors; Inorganic materials; Kinetic energy; Magnetic materials; Nanostructured materials; Organic materials; Semiconductor materials; Shape; Thick film sensors;
Conference_Titel :
Sensors, 2008 IEEE
Conference_Location :
Lecce
Print_ISBN :
978-1-4244-2580-8
Electronic_ISBN :
1930-0395
DOI :
10.1109/ICSENS.2008.4716730