DocumentCode :
1903487
Title :
Search of Initial Conditions for Dynamic Systems using Intelligent Optimization Methods
Author :
Barrera, Julio ; Flores, Juan J.
Author_Institution :
Univ. Michoacana de San Nicolas de Hidalgo, Hidalgo
fYear :
2007
fDate :
25-28 Sept. 2007
Firstpage :
645
Lastpage :
650
Abstract :
In this contribution we propose the use of intelligent optimization methods in the search of initial conditions for the analysis of dynamic systems. The use of intelligent optimization methods provides a search tool that does not depend on the experience of the researcher in the particular system to analyze. An example of a dynamic system that models an electrical power system is provided. Three intelligent optimization methods are compared: genetic algorithms, multimodal genetic algorithms, and particle swarm optimization. An analysis of precision and error is presented, contrasting the three methods.
Keywords :
genetic algorithms; particle swarm optimisation; power systems; dynamic systems; electrical power system; intelligent optimization methods; multimodal genetic algorithms; particle swarm optimization; Differential equations; Genetic algorithms; Intelligent robots; Intelligent systems; Intelligent vehicles; Optimization methods; Particle swarm optimization; Power system dynamics; Power system modeling; Vehicle dynamics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electronics, Robotics and Automotive Mechanics Conference, 2007. CERMA 2007
Conference_Location :
Morelos
Print_ISBN :
978-0-7695-2974-5
Type :
conf
DOI :
10.1109/CERMA.2007.4367760
Filename :
4367760
Link To Document :
بازگشت