DocumentCode :
1903588
Title :
The primeness degree of an nD polynomial matrix
Author :
Wood, Jeffrey ; Rogers, Eric ; Owens, David H.
Author_Institution :
Dept. of Electr. & Comput. Sci., Southampton Univ., UK
Volume :
5
fYear :
1997
fDate :
10-12 Dec 1997
Firstpage :
4254
Abstract :
In nD systems theory, the concept of matrix primeness recurs frequently, and there are several distinct types of primeness. In this paper we define the primeness degree of a polynomial matrix, which has several algebraic interpretations. We generalize previous results on Bezout identities and complementation laws to arbitrary primeness degrees, thus unifying earlier work
Keywords :
multidimensional systems; polynomial matrices; system theory; Bezout identities; complementation laws; matrix primeness; multidimensional polynomial matrix; primeness degree; systems theory; Algebra; Control systems; Intersymbol interference; Matrix decomposition; Neodymium; Polynomials;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1997., Proceedings of the 36th IEEE Conference on
Conference_Location :
San Diego, CA
ISSN :
0191-2216
Print_ISBN :
0-7803-4187-2
Type :
conf
DOI :
10.1109/CDC.1997.649504
Filename :
649504
Link To Document :
بازگشت