DocumentCode :
1904820
Title :
A Liouville type theorem for p-harmonic morphisms
Author :
Kang, Tae Ho
Author_Institution :
Sch. of Math. & Phys., Ulsan Univ., South Korea
Volume :
3
fYear :
2003
fDate :
6-6 July 2003
Firstpage :
220
Abstract :
Let M be a complete noncompact Riemannian manifold with nonnegative Ricci curvature and N be a Riemannian manifold with nonpositive scalar curvature. Then we show that each p-harmonic morphism /spl phi/ from M to N with /spl int//sub M/|d/spl phi/|/sup 2p-2/d/spl upsi//sub g/ < /spl infin/ is a constant map.
Keywords :
Liouville equation; geometry; harmonic analysis; Liouville type theorem; complete noncompact Riemannian manifold; constant map; nonnegative Ricci curvature; nonpositive scalar curvature; p-harmonic morphisms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Science and Technology, 2003. Proceedings KORUS 2003. The 7th Korea-Russia International Symposium on
Conference_Location :
Ulsan, South Korea
Print_ISBN :
89-7868-617-6
Type :
conf
Filename :
1222868
Link To Document :
بازگشت