DocumentCode :
1905437
Title :
Solving software module clustering problem by evolutionary algorithms
Author :
Praditwong, Kata
Author_Institution :
Dept. of Comput., Silpakorn Univ., Thailand
fYear :
2011
fDate :
11-13 May 2011
Firstpage :
154
Lastpage :
159
Abstract :
Well organized software is easy to maintain but software modularization is complicated because of the number of modules. Automated software module clustering is transformed to a search-based problem. This paper describes the experiments on real-world problems of software module clustering by metaheuristic search methods such as genetic algorithms. This paper introduces the Grouping Genetic Algorithm (GGA) to the benchmarks. The fitness function measures a module granularity which is cohesion and coupling. Empirical result reports that the GGA outperforms a genetic algorithm with string representation.
Keywords :
genetic algorithms; pattern clustering; search problems; software maintenance; automated software module clustering; evolutionary algorithm; fitness function; grouping genetic algorithm; metaheuristic search method; module granularity; search-based problem; software modularization; string representation; Robustness; Variable speed drives; Grouping Genetic Algorithm; Software module clustering; evolutionary algorithms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Science and Software Engineering (JCSSE), 2011 Eighth International Joint Conference on
Conference_Location :
Nakhon Pathom
Print_ISBN :
978-1-4577-0686-8
Type :
conf
DOI :
10.1109/JCSSE.2011.5930112
Filename :
5930112
Link To Document :
بازگشت