DocumentCode :
1906472
Title :
Estimation of the parameters of 2D Debye dispersive media using a time-domain inverse scattering technique
Author :
Papadopoulos, Theseus G. ; Rekanos, Ioannis T.
Author_Institution :
Phys. Div., Aristotle Univ. of Thessaloniki, Thessaloniki, Greece
fYear :
2011
fDate :
13-20 Aug. 2011
Firstpage :
1
Lastpage :
4
Abstract :
A time-domain inverse scattering method for the reconstruction of inhomogeneous dispersive media described by the Debye model is presented. The estimation of the parameters characterizing the scatterer is based on the minimization of a cost function, which describes the discrepancy between measured and estimated values of the electric field. Applying the calculus of variations, we derive the Fréchet derivatives with respect to the scatterer properties, which can be utilized by any gradient-based optimization technique. Numerical results for the reconstruction of two-dimensional Debye scatterer using the Polak-Ribière algorithm exhibit the efficiency of the proposed method.
Keywords :
dispersive media; electric field measurement; electromagnetic wave scattering; gradient methods; inhomogeneous media; minimisation; parameter estimation; 2D Debye dispersive media; Debye model; Fréchet derivatives; Polak-Ribière algorithm; calculus of variations; cost function minimization; electric field; estimated values; gradient-based optimization technique; inhomogeneous dispersive media; measured values; parameter estimation; scatterer property; time-domain inverse scattering technique; two-dimensional Debye scatterer; Cost function; Dispersion; Electric fields; Image reconstruction; Inverse problems; Time domain analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
General Assembly and Scientific Symposium, 2011 XXXth URSI
Conference_Location :
Istanbul
Print_ISBN :
978-1-4244-5117-3
Type :
conf
DOI :
10.1109/URSIGASS.2011.6050370
Filename :
6050370
Link To Document :
بازگشت