DocumentCode :
1909274
Title :
A nonlinear scale-space filter by physical computation
Author :
Wong, Yiu-Fai
Author_Institution :
Inst. for Sci. Comput. Res., Lawrence Livermore Nat. Lab., Livermore, CA, USA
fYear :
1993
fDate :
6-9 Sep 1993
Firstpage :
241
Lastpage :
250
Abstract :
Using the maximum entropy principle and statistical mechanics, the author derives and demonstrates a nonlinear scale-space filter. For each datum in a signal, a neighborhood of weighted data is used for scale-space clustering. The cluster center becomes the filter output. The filter is governed by a single scale parameter which dictates the spatial extent of nearby data used for clustering. This, together with the local characteristic of the signal, determine the scale parameter in the output space, which dictates the influences of these data on the output. This filter is thus completely unsupervised and data-driven. It provides a mechanism for a) removing noise; b) preserving edges and c) improved smoothing of nonimpulsive noise
Keywords :
filtering theory; image processing; maximum entropy methods; nonlinear filters; signal processing; statistical mechanics; edge preserving; maximum entropy principle; noise removal; output space; scale parameter; scale space nonlinear filter; scale-space clustering; statistical mechanics; Computer vision; Filtering; Filters; Image coding; Image edge detection; Laboratories; Noise reduction; Physics computing; Scientific computing; Smoothing methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks for Processing [1993] III. Proceedings of the 1993 IEEE-SP Workshop
Conference_Location :
Linthicum Heights, MD
Print_ISBN :
0-7803-0928-6
Type :
conf
DOI :
10.1109/NNSP.1993.471864
Filename :
471864
Link To Document :
بازگشت