Title :
Geometric Modeling and Parametric Characterization for Virtual Design of Pharmaceutical Tablets
Author :
Ahmat, Norhayati ; Castro, Gabriela González ; Ugail, Hassan
Author_Institution :
Fak. Sains dan Matematik, Univ. Pendidikan Sultan Idris, Tanjong Malim, Malaysia
Abstract :
The mechanisms involved for compaction of pharmaceutical powders have become a crucial step in the development cycle for tablet design. Compressibility and compactibility are two important properties which define the ability of loose powder to transform into a compact. The compacted powder, also known as tablet, needs to be strong enough in order to handle different types of stress due to packaging and loading conditions. This work presents a technique for designing solid tablets based on the use of Partial Differential Equations (PDEs). The shape and size of the generated tablet can be changed by exploiting the analytic expressions relating the coefficients associated with the PDE method. This work also has simulated the compressibility of pharmaceutical powders by utilizing deformation models found in literature. The results are analyzed using the Heckel model. Finally, the automatic design optimization is performed by combining the PDE method and a standard method for numerical optimization for obtaining optimal design of tablets with maximum tensile strength. The results show that the PDE method is able to represent the physical changes of the deformed tablet.
Keywords :
CAD; compressibility; drugs; optimisation; partial differential equations; powders; production engineering computing; tensile strength; virtual reality; Heckel model; PDE method; automatic design optimization; compacted powder; compactibility; generated tablet shape; generated tablet size; geometric modelling; loading conditions; loose powder; numerical optimization; optimal design; packaging conditions; parametric characterization; partial differential equations; pharmaceutical powders; pharmaceutical powders compressibility; pharmaceutical tablets; solid tablets design; tablet design; tensile strength; virtual design; Equations; Mathematical model; Optimization; Pharmaceuticals; Powders; Shape; Solids; PDE-based surface representation; compaction; deformation; optimization;
Conference_Titel :
Cyberworlds (CW), 2012 International Conference on
Conference_Location :
Darmstadt
Print_ISBN :
978-1-4673-2736-7