DocumentCode :
1925130
Title :
Autotuning Stencil-Based Computations on GPUs
Author :
Mametjanov, A. ; Lowell, D. ; Ching-Chen Ma ; Norris, Barnaby
Author_Institution :
Math. & Comput. Sci. Div., Argonne Nat. Lab., Argonne, IL, USA
fYear :
2012
fDate :
24-28 Sept. 2012
Firstpage :
266
Lastpage :
274
Abstract :
Finite-difference, stencil-based discretization approaches are widely used in the solution of partial differential equations describing physical phenomena. Newton-Krylov iterative methods commonly used in stencil-based solutions generate matrices that exhibit diagonal sparsity patterns. To exploit these structures on modern GPUs, we extend the standard diagonal sparse matrix representation and define new matrix and vector data types in the PETSc parallel numerical toolkit. We create tunable CUDA implementations of the operations associated with these types after identifying a number of GPU-specific optimizations and tuning parameters for these operations. We discuss our implementation of GPU auto tuning capabilities in the Orio framework and present performance results for several kernels, comparing them with vendor-tuned library implementations.
Keywords :
Newton method; finite difference methods; graphics processing units; optimisation; parallel architectures; parallel programming; partial differential equations; sparse matrices; vectors; GPU-specific optimization; Newton-Krylov iterative method; Orio autotuning process; PETSc parallel numerical toolkit; diagonal sparse matrix representation; finite difference stencil-based discretization; matrix data type; matrix generation; partial differential equations; stencil-based computation autotuning; tunable CUDA implementation; tuning parameters; vector data type; vendor-tuned library implementation; Computer architecture; Graphics processing unit; Instruction sets; Kernel; Libraries; Sparse matrices; Tuning; CUDA; GPU; autotuning; stencil;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Cluster Computing (CLUSTER), 2012 IEEE International Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4673-2422-9
Type :
conf
DOI :
10.1109/CLUSTER.2012.46
Filename :
6337788
Link To Document :
بازگشت